ÉCOLE POLYTECHNIQUE CONCOURS D'ADMISSION 1982 OPTION M'

PREMIÈRE COMPOSITION DE MATHÉMATIQUES (4 heures)

Le théorème de HARDY-LITTLEWOOD

Pour toute série S à termes complexes a_n ($n \in \mathbb{N}$), on note $s_n = \sum_{k=0}^n a_k$ la somme partielle

de rang n et $\sigma_n = \frac{1}{n+1} \sum_{k=0}^n s_k$ la moyenne arithmétique des n+1 premières sommes partielles.

Dans l'ensemble des séries S, on envisage les sous-ensembles :

 \mathcal{S}_1 constitué des séries S convergentes;

 \mathscr{S}_2 constitué des séries S telles que la suite $(\sigma_n)_{n\in\mathbb{N}}$ converge dans \mathbb{C} ;

 \mathscr{S}_3 constitué des séries S telles que la série entière de coefficients a_n ait un rayon de convergence au moins égal à 1 et que de plus $f(x) = \sum_{n=0}^{\infty} a_n x^n$ définisse sur]-1,1[une fonction f ayant dans $\mathbb C$ une limite, notée l, lorsque x tend vers 1 par valeurs inférieures.

Partie I

- 1. Étudier, du point de vue de l'appartenance à $\mathcal{S}_1, \mathcal{S}_2$ et \mathcal{S}_3 , la série S_1 de terme général $a_n = (-1)^n$.
- 2. Étudier, du point de vue de l'appartenance à $\mathcal{S}_1, \mathcal{S}_2$ et \mathcal{S}_3 , la série S_1 de terme général $a_n = (-1)^{n+1}n$.
- 3. Établir l'inclusion $\mathscr{S}_1 \subset \mathscr{S}_2$.
- 4. Soit $S \in \mathcal{S}_2$.
 - (a) Établir la convergence, pour tout $x \in]-1,1[$, de la série $\sum_{n=0}^{\infty} (n+1)\sigma_n x^n$ puis de la série $\sum_{n=0}^{\infty} s_n x^n$. En déduire une expression de $\sum_{n=0}^{\infty} a_n x^n$ à l'aide de la somme g(x) de la première des ces séries entières.
 - (b) Montrer que $S \in \mathscr{S}_3$ et que, lorsque x tend vers 1, f a pour limite la limite σ de la suite $(\sigma)_{n \in \mathbb{N}}$.
- 5. Résumer, en termes d'inclusions entre \mathcal{S}_1 , \mathcal{S}_2 et \mathcal{S}_3 les résultats obtenus jusqu'ici. Comment ces résultats se modifient-ils si l'on se restreint à des séries S à termes a_n positifs ou nuls?

Partie II

Dans cette partie, on considère une série S fixée, appartenant à \mathscr{S}_3 , de terme général réel a_n , telle qu'il existe un réel A vérifiant l'inégalité $na_n \leqslant A$ pour tout $n \in \mathbb{N}$.

De plus, tous des polynômes envisagés seront à coefficients réels. Enfin, dans le calcul de x^n pour $x \in]-1,1[$ et $n \in \mathbb{N}$, on conviendra que $0^0=1$.

- 1. (a) Soit $p(X) = \sum_{k=1}^{d} \alpha_k x^k$ un polynôme de valuation strictement positive. Montrer que la série $\sum_{n=0}^{\infty} a_n p(x^n)$ converge pour tout $x \in]-1; 1[$ et calculer, lorsque x tend vers 1, la limite de sa somme à l'aide de l et d'une valeur prise par p en un point qu'on précisera.
 - (b) Soit $q = \sum_{k=0}^{d'} \beta_k x^k$ un polynôme. Montrer que la série $\sum_{n=0}^{\infty} x^n q(x^n)$ converge pour tout $x \in]-1$; 1 [et calculer, lorsque x tend vers 1, la limite de $(1-x)\sum_{n=0}^{\infty} x^n q(x^n)$ à l'aide d'une intégrale portant sur q.
- 2. On admet que pour toute fonction φ numérique continue sur [0,1] il existe une suite de polynômes convergeant vers φ uniformément sur [0,1]. En déduire que pour tout fonction ψ numérique continue sur $\left[0,\frac{1}{2}\right[$ et $\left[\frac{1}{2},1\right]$ et admettant une limite à gauche au point $\frac{1}{2}$ et pour tout $\varepsilon > 0$, il existe deux polynômes q_1 et q_2 tels que $q_1(x) \leqslant \psi(x) \leqslant q_2(x)$ pour tout $x \in [0,1]$ avec $\int_0^1 (q_2(x)-q_1(x))dx \leqslant \varepsilon$.
- 3. Soit χ la fonction égale à 1 sur $\left[\frac{1}{2},1\right]$ et nulle sur $\left[0,\frac{1}{2}\right[$.
 - (a) Montrer que la série $\sum_{n=0}^{\infty} a_n \chi(x^n)$ converge uniformément sur tout intervalle compact inclus dans [0; 1 [.
 - (b) Montrer que, pour tout $\varepsilon > 0$, il existe deux polynômes p_1 et p_2 , de valuations strictement positives, tels que $p_1(1) = p_2(1)$ et que $p_1(x) \leqslant \chi(x) \leqslant p_2(x)$ pour tout $x \in [0,1]$ avec $\int_0^1 \frac{p_2(x) p_1(x)}{x(1-x)} dx \leqslant \varepsilon.$
 - (c) Établir que pour x appartenant à [0,1[et assez proche de 1, les différences $\sum_{n=0}^{\infty} a_n \chi(x^n) \sum_{n=0}^{\infty} a_n p_1(x^n)$ et $\sum_{n=0}^{\infty} a_n p_2(x^n) \sum_{n=0}^{\infty} a_n \chi(x^n)$ sont toutes deux majorées par $(A+1)\varepsilon$, et en déduire la convergence de la série S.
 - (d) La série $\sum_{n=0}^{\infty} a_n \chi(x^n)$ converge-t-elle uniformément sur [0,1]?
- 4. (a) Soit S_3 une série appartenant à $\in \mathscr{S}_3$, de terme général b_n et telle qu'il existe un réel B vérifiant $nb_n \geqslant B$ pour tout $n \in \mathbb{N}$. La série S_3 converge-t-elle?
 - (b) Existe-t-il une telle série S_3 vérifiant en outre la condition $\sup_{n\in\mathbb{N}} nb_n = +\infty$?
 - (c) Soit S_4 une série appartenant à S_3 , de terme général complexes c_n et telle qu'il existe un réel C vérifiant l'inégalité $|nc_n| \leq C$ pour tout $n \in \mathbb{N}$. La série S_4 converge-t-elle?

(d) Existe-t-il une série S_5 appartenant à $\in \mathscr{S}_1$, de terme général réel d_n et telle que $\sup_{n\in\mathbb{N}}nd_n=-\inf_{n\in\mathbb{N}}nd_n=+\infty\,?$

FIN DE L'ÉPREUVE